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ABSTRACT   

In the current paper the effects of climate change on precipitation extremes in Greece are studied. The projections of 
RegCM3_10 climatic model in particular are evaluated, for a time period of 150 years (1951-2100) in four regions of Greece. 
The available precipitation data is separated in three parts of equal size (fifty years each), in order to represent the fifty years 
of the current, the short-term and the long-term future climate. Model precipitation data is found to hold bias, commonly 
detected in regional climate models, making it necessary to perform various methods of bias correction. Both parametric 
and non-parametric methods are used for all four regions analysed, selecting the most appropriate for each region. Extreme 
value theory (EVT) is then implemented for the bias corrected precipitation datasets and both GEV (Generalized Extreme 
Value Distribution) and GPD (Generalized Pareto Distribution) are fitted. For the GPD, declustering of the excesses over 
the selected threshold is used to insure independence of exceedences. Return level estimates of each 50 year-period are 
calculated and compared to assess the changes in the extreme precipitation climate between present and future conditions. 
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1. INTRODUCTION   

Extreme precipitation events can give rise to serious flooding and can have severe impacts on the human society, as well 
as on the environment. The general inception of a changing climate, with extreme meteorological events of higher frequency 
and intensity increases the exposure of the human society and the environment to severe damages. Therefore, the analysis 
of extreme meteorological events under present and future climate conditions is of great significance.  

Regarding precipitation extremes, increased precipitation intensity in a future climate was one of the earliest model results 
(Durman et al., 2001; Giorgi et al., 1998; Kothavala, 1997; Hennessy et al., 1997) and remains a consistent result with 
improved more detailed models. A number of studies conducted by the Intergovernmental Panel on Climate Change (IPCC, 
2007) reported tentative evidence for changes in the occurrence of certain meteorological events during the 20th century. 
The IPCC assessments relied heavily upon the use of General Circulation Models (GCMs), namely large mechanistic models 
for the global atmosphere. Regional Climate Models (RCMs) simulate regional climate with a more fine resolution, based on 
a better topography representation. During the previous years, different RCMs have been used to produce high-resolution 
climate scenario calculations on the European scale (e.g EU-project ENSEMBLES), including the entire Mediterranean 
basin. 

In the past, a large number of climatic studies has been conducted using RCMs for the whole European area (Flocas et al., 
2010; Goubanova and Li, 2007; Fowler et al., 2007; Ekström et al., 2005). Jones and Reid (2001) investigate changes in 
return levels of daily precipitation over Great Britain using a regional climate scenario from the Hadley Centre, in which 
greenhouse gas concentrations are assumed to increase 1% per year. Booij (2002) determines and compares extreme 
precipitation from stations, reanalysis projects, GCMs and RCMs in the area of the river Meuse, in Western Europe. Frei et 
al. (2003) undertake an evaluation of the statistics of daily precipitation as simulated by five RCMs using comprehensive 
observations in the region of the European Alps. Semmler and Jacob (2004) apply the regional climate model REMO to the 
European region to investigate the impact of future climate changes on the frequency and intensity of extreme precipitation 
events. Frei et al. (2006) undertake an analysis of precipitation extremes produced by six RCMs in the European region, to 
examine the effects of climate change on such events and to detect the model effect on them. Beninston et al. (2007) 
examine and provide evidence for the dependence of precipitation statistics and extremes on RCM selection. Hanson et al. 
(2007) provide an overview of the aims, objectives, research activities undertaken, and a selection of results generated in 
the European Commission funded project entitled “MICE: Modelling the Impact of Climate Extremes”, which focused on 
changes in temperature, precipitation and wind extremes using RCMs. Nikulin et al. (2011) examine projected future 
changes in statistics of precipitation extremes in the period 2071-2100 relative to the control climate period and investigate 
the degree of their dependency on driving GCMs. Tolika et al. (2012) assess the potential regional future changes in 
seasonal precipitation for the greater area of Greece over the 21st century for different future emission scenarios of IPCC. 
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Extreme precipitation events are usually analysed and modelled within the framework of Extreme Value Theory (EVT). This 
theory allows extrapolation of the data to levels more extreme than those observed. Katz et al. (2002) apply EVT to 
precipitation extremes within a stationary context and by considering trends and dependence on atmospheric-ocean 
circulation patterns. Fowler and Kilsby (2003) analyse extreme precipitation in the UK using EVT within a regional frequency 
analysis framework. Feng et al. (2007) model extreme precipitation in China using the Generalized Extreme Value 
distribution function (GEV). Cooley et al. (2007) produce precipitation return level maps in the area of Colorado by applying 
hierarchical models for the frequency and the intensity of extreme events. Buishand et al. (2008) use the theory of extremes 
of continuous processes to estimate the 100-year quantile of the daily area-average rainfall over North Holland by simulating 
the daily process. Fowler et al. (2010) investigate changes in precipitation extremes in the UK within an extreme value 
analysis framework. Williems et al. (2012) provide an overview of existing methods for assessing the impacts of climate 
change on urban rainfall extremes and discuss the future challenges in the field.   

 In the present work the effects of climate change on precipitation extremes in four areas of the Greek terrain are 
investigated. In Section 2 the bias correction techniques applied to the climatic data of all four locations are presented and 
explained. Section 3 includes a general overview of the extreme value models, namely the Generalized Extreme Value 
(GEV) and the Generalized Pareto (GPD) distributions that will be fitted to the extreme samples. The declustering technique 
used within the GPD is also presented. Section 4 incorporates the parameter estimation methods used in the present work, 
namely the Maximum Likelihood Estimation (MLE) and the Generalized Maximum Likelihood Estimation (GMLE). Section 5 
presents the different precipitation datasets analysed in the present work, together with their basic statistical characteristics. 
The main results of the work are presented in Section 6 and its basic conclusions in Section 7. 

2. BIAS CORRECTION OF CLIMATIC DATA 

Climatic predictions of RCMs are often subject to phenomena of bias, possibly due to the limited process understanding, 
the incomplete conceptual representation of the atmospheric processes leading to the generation of climate data, the 
incomplete discretisation, the spatial averaging in each cell of the model grid and other parameters. Bias represents the 
error component of the model that is independent of time (Haerter et al., 2011) and imposes the processing of the data 
before using it to estimate the effects of climate change in any domain of study. Particularly, when referring to extreme 
events, it has been pointed out that if the output of RCMs is not corrected for bias, it leads to unrealistic exceedance 
probabilities, rendering the analysis of extreme events unreliable (Durman et al., 2001). However, it should be noticed that 
incorrect representation of the different processes involved in a physical system cannot be rectified by means of bias 
correction. Within the framework of bias correction methods, the error of the climatic model is considered stationary and the 
correction techniques and parameterisation for the present climate are also considered valid for the future climate. Therefore, 
for future projections the bias component is assumed unchangeable (Berg et al., 2012). 

Among the bias correction techniques, recent studies mainly using precipitation and temperature data, indicate the quantile 
mapping methods as the most efficient, even for the most extreme part of the distribution of the studied variables (Themeɮl 
et al., 2011). The above mentioned techniques include the development of transfer functions between the cumulative 
distribution functions of the data that need to be corrected for bias and the observed dataset. Quantile mapping (also referred 
to as quantile-quantile transformation) results in a new distribution function for the modelled variable almost equal to the one 
of the observed variable. The main limitations of the quantile - quantile transformation focus on the preservation of the 
temporal autocorrelation properties of the data, the independent correction of different variables with biases that might not 
be independent and the inability to correct the spatial autocorrelation of different variables (Boé et al., 2007). 

The methods used in the present work include the development of parametric, as well as non-parametric quantile - quantile 
transformations. The former transformations include linear, polynomial, exponential and scale functions. The parametric 
transformations used are presented below (Gudmundsson et al., 2012): 
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where xcor is the precipitation quantity of the climatic model after being corrected for bias, x is the precipitation quantity of 
the model, a, b, τ are the parameters of the bias correction function that are estimated by minimizing the residual sums of 
squares and x0 is the dry day correction term (the value of precipitation below which modeled precipitation is set to zero). A 
higher number of parameters in the models, can provide a better fit to the data. However, this can decrease the reliability of 
the bias correction method for the future data (Piani et al., 2010). The main disadvantage of the parametric bias correction 
techniques is the assumption of stationarity that allows using the same transfer function for present and future conditions.  

Within the non-parametric framework, the empirical distribution functions of the observed and the modeled data are 
represented by means of tables of empirical percentiles, while the values between them are assessed by means of a 
monotonic tricubic spline functions (Gudmundsson et al., 2012). Even if these methods provide better results than their 
parametric counterparts, they should be implemented with great susceptibility if the model values of the future projections 
are significantly larger than the training values.  
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3. EXTREME VALUE MODELS  

The univariate Extreme Value Theory (EVT) includes models for block maxima and exceedances over high thresholds (POT 
models). The first correspond to the family of GEV distributions (Generalized Extreme Value) including the Gumbel (Type 
Ι), the Fréchet (Type ΙΙ) and the Weibull (Type ΙΙΙ) distributions. The cumulative distribution function of the GEV for ξ≠0 is 
given by the following formula (Coles, 2001): 
 

                 -1/( - ) ( - )
( ) exp[-{1 } ] for 1 0

x x
G x   

 
                                           [2] 

 
where μ, σ>0 and ξ are the location, scale and shape parameters of the distribution, respectively. The special case with ξ=0 
corresponds to the Gumbel distribution function. The above mentioned three limit types resulting from the Extremal Types 
Theorem, present a completely different tail behavior. For the Weibull function, the upper limit of the distribution is finite, 
while for the other two types, Fréchet and Gumbel, it tends to infinity. However, the density function of G decays exponentially 
for the Gumbel distribution function and polynomially for the Fréchet distribution function.  

If X1, X2,…, Xn is a series of independent random values of a random variable X with common distribution function F(x) and 
Y1, Y2,…, Yk (Yi=Xi-u) are the excesses over a high enough threshold u, in some asymptotic sense, the conditional 
distribution of excesses follows the Generalised Pareto Distribution (GPD): 
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where σ*>0 and ξ denote the scale and shape parameters of the distribution, respectively. For ξ=0, the GPD results in an 
exponential distribution with parameter 1/σ*. An appropriate threshold u should be selected, which defines the level upon 
which an extreme event is defined. Two different methodologies are used here for the threshold selection: (a) the mean 
residual life plot of the excesses of different threshold values and (b) the plots of σ* and ξ for a variety of possible threshold 
values. The mean residual life plot consists of the points: 
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where x1,…xnu consist of the nu observations that exceed u and xmax is the largest of the Xi. An appropriate threshold value 
is the value of u above which the mean residual life plot is approximately linear and estimates of σ* and ξ are constant with 
u. Due to sampling variability, estimates of these parameters will not be exactly constant, but they should be stable after 
allowance for their sampling errors. The GPD presents a completely different tail behavior based on the value of the shape 
parameter, ξ. For ξ<0 the distribution of excesses has an upper bound, while for ξ>0 it has no upper limit.  

Modelling the data over a high threshold using the GPD assumes independence of successive observations. In practice, 
there is considerable short-range dependence in precipitation data. When several threshold exceedances occur close in 
time they are considered to form a cluster. The presence of short range dependence affects the limiting behaviour of extreme 
events primary through the value of the extremal index, θ (Ledford and Tawn, 2003). The extremal index is defined as the 
reciprocal of the mean cluster size and can be calculated as θ = nc/nu, where nc is the number of clusters and nu the number 
of exceedances of the threshold. When θ = 1, the extreme value series can be considered approximately independent. A 
simple way to define a cluster of events, is to set an appropriate threshold and to consider all consecutive events that 
overpass it to belong to the same cluster. The cluster should be terminated when r consecutive observations fall below the 
threshold and the next exceedance defines a new one.   

The return period of an extreme event describes its expected frequency of appearance. It determines the frequency of 
average equalization or exceedance of a certain variable. It is usually expressed in years and it is defined as the reciprocal 
of the annual exceedance frequency. A basic goal of extreme value analysis is the determination of the T-years return level. 
This is defined as the limit for which the average number of exceedances within a time interval of duration T, is equal to 
unity. Therefore, the return level determines the (1-1/T) quantile of the distribution function F, corresponding to a return 
period of T years. For the GEV distribution function and for ξ≠0, the estimates of the extreme value quantiles are assessed 
by means of the following (Coles, 2001): 
 

                                    [1 { log(1 )} ]pz p      
σ
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where G(zp)=1-p. The variable zp is the return level corresponding to the 1/p years return period, expected to be exceeded 
on average once every 1/p years. For the GPD distribution function the zp return level is estimated considering the 
declustering procedure implemented. The short-range dependence between precipitation values is incorporated in the return 
level estimation through the extremal index, θ. Estimates of extreme quantiles are assessed for ξ≠0 using the following 
formula (Coles, 2001): 
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where ny is the number of observations per year and ζu the exceedance rate of the threshold, u. For a stationary 
phenomenon, the return level plot determines the variation of the variable zp of Eq. [5] or Eq. [6] with the variable yp =-log(1-
p) represented in a logarithmic scale. The variability of the return level estimates is assessed using the delta method:                   
 

                                                       T(z )p p pVar z V z                                                                 [7] 

 
where V is the variance-covariance matrix of the estimates of the parameters of each distribution. The delta function is also 
calculated for these estimates.    

The goodness of fit of both extreme value distributions is judged using diagnostic plots. These diagnostic plots consist of 
probability plots and quantile plots that compare the empirical and fitted distribution functions of the samples in a probabilistic 
or data scale, respectively, return level plots and density plots. The return level plots consist of the points {(logyp, zp): 0<p<1}, 
where zp is calculated using Eq. [5] or [6]. Confidence intervals, calculated using Eq. [7], and empirical estimates of the 
return level function are also added to the plot, to enable a goodness of fit diagnostic. The density plot includes a comparison 
of the probability density function of the fitted model with a histogram of the data.  

4. PARAMETER ESTIMATION METHODS 

The maximum likelihood estimation procedure (MLE) can be utilized to estimate the parameters of the fitted distribution 
functions. The likelihood function of n independent random variables can be defined as their joint probability density function 
and can be assessed as a function of the parameter vector θ of their distributions. The ML estimator is asymptotically 
unbiased, consistent and efficient, when the distribution function of the studied variable can be considered known. Also, the 
MLE procedure can be utilized to assess the standard deviation of the parameters of the fitted model. If X1,…, Xn are 
independent random variables following the GEV distribution function, the maximum likelihood function for ξ≠0 is (Coles, 
2001): 
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For the GPD the maximum likelihood function for ξ≠0 is (Coles, 2001): 
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where yi=xi-u and u is the threshold selected using the procedures described in Section 3.  

The MLEs of the parameters μ, σ and ξ of the GEV family of distributions and σ* and ξ of the GPD family of distributions, 
result from the maximization of Eq. [8] and [9], respectively. However, this method is not applicable in cases where the MLEs 
do not exist, or they are not unique or present bias (Koch, 1991). It has been observed that the ML estimator can lead to 
inadmissible results. However, it has been proven that when the sample size is large enough, the ML estimator is a good 
choice (van Gelder, 1999).  

The MLE procedure has been proven to be fully efficient for large sample sizes, while for small sample sizes the maximum 
likelihood estimates can be unstable. Also, it is known from the literature that the MLE should be used for parameter 
estimation of the extreme value distribution functions, when the shape parameter of the distribution is calculated within the 
interval [-0.5, 0.5]. To remedy the abovementioned problems, the Generalized Maximum Likelihood Estimation (GMLE) 
procedure is introduced to force the shape parameter to take more realistic values. Based on different studies, the GMLE 
has been proven to better represent the shape parameter, assuring also a narrower confidence interval of the parameter, 
especially for precipitation data (Madsen and Rosbjerg, 1997).    

Martins and Stedinger (2000) developed the GML estimator, in which the shape parameter is limited to the interval [-0.5, 
0.5]. A Beta prior distribution function is constructed for the shape parameter with parameters equal to q=9 and p=6, with a 
mode at 0.1 and 90% of its probability mass concentrated over values of -0.1 and 0.3. More specifically, according to Martins 
and Stedinger (2000):  
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Therefore, the Generalized Maximum Likelihood (GML) function is: 

                                              ( ) ( ) ( )GL x L x  θ θ                                                   [11] 

 
where θ is the parameter vector of each distribution function. 
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5. PRECIPITATION DATASETS  

The precipitation datasets of the present work comprise of both climatic predictions of the RegCM3_10 model and 
observations obtained from the Hellenic National Meteorological Service of Greece for four selected study areas. The four 
areas studied are presented in Figure 1 and include Thessaloniki (area 1), Lesvos (area 2), Heraklio (area 3) and Corfu 
(area 4). The selection of the four areas mainly intends in examining Greek locations that can be considered representative 
in a climatological framework. The study of the extreme present and future precipitation climate in these areas can provide 
useful information for the entire Greek area.  
 

 
Figure 1. Locations of the four study areas 

The datasets provided from the National Meteorological Service (HNMS) correspond to a time period of 43 years (1958-
2000) and have a daily time resolution. The locations of the measurements correspond to [22.57o, 40.31o] for area 1, [26.35o, 
39.03o] for area 2, [25.09o, 35.19o] for area 3 and [19.55o, 39.37o] for area 4. There are no missing values in the datasets 
provided.  

Climatic data of the present work result from the RegCM3_10 Regional Climate Model (RCM) with 10x10 km spatial 
resolution for the Greek region. RegCM3_10 is an enhanced version of the regional model RegCM3_25 with a spatial 
resolution 25x25 km. RegCM3 was built upon the NCAR-Pennsylvania State (PSU) University Mesoscale Model version 4 
(MM4) (Dickinson et al., 1989). The model uses the A1B SRES emissions scenario (Jacob, 2007) for its future projections. 
For the Greek area, the model predicts a small decrease of precipitation and an increase of temperature for the last thirty 
years of the 21st century (Velikou et al., 2014). However, this decrease is detected only in extreme precipitation in the 
summer period, while for the winter months there are strong seasonal variations on a local scale. The grid point of the model 
database closest to the meteorological gauge is selected for the extremal analysis. It should be noted that the topographical 
characteristics for the locations of the meteorological gauge and the climatic data are taken into consideration, in order to 
select the grid point that corresponds to a location with similar characteristics with the one where observations are available. 
Thus, for areas 1 (Thessaloniki) and 4 (Corfu) the grid point closest to the gauging location is selected for further analysis. 
For area 3 (Heraklio), the gauging location is almost in the middle of the four grid points. In this case, an average of the four 
time series is utilized. For area 2 (Lesvos), although there is a grid point close to the gauging location, there are significant 
differences in the topography of the two locations. Therefore, the second closest point to the gauging location is selected. 

Bias correction techniques described in Section 2 are then implemented to the model data. The selection of the most 
appropriate method for such a correction is performed using quantile plots to compare the transfer functions of the candidate 
models. Both parametric and non-parametric techniques are utilized. Bias correction techniques are implemented to the 
present climate data (1958-2000) in order to correct the pdf of the simulated values to match the pdf of the observations. To 
distinguish between parametric and non-parametric methods, it should be noted that even if the non-parametric methods 
outperform the parametric ones, they may generate inadmissible results outside the range of the correction function. 
Therefore, when future simulations are significantly higher than the current climate simulations, parametric methods are 
more usually utilized. After selecting the appropriate transfer function, the correction is also implemented to the future climate 
simulations. For areas 1 (Thessaloniki) and 3 (Heraklio), the parametric exponential function is selected as the most 
appropriate bias correction technique. For areas 2 (Lesvos) and 4 (Corfu) the non-parametric approach is utilized, where 
the empirical distribution functions of the observed and the model data are represented by means of tables of empirical 
percentiles. The values between them are assessed by means of a monotonic tricubic spline function in the former case 
and by means of linear interpolation in the latter.  

Some basic descriptive statistics for the wet days of all datasets (observations, model data, bias corrected data) and for all 
four areas are provided in Tables 1-4. The tables include minimum and maximum values, estimates of mean and median, 
as well as estimates of standard deviation, skewness and kurtosis of the data (wet days only). The number of dry days in 
each period is also shown. 

For the area of Thessaloniki (area 1), it should be noted that the model data of 1951-2000 present different statistical 
characteristics from the observed data sample (1958-2000). The mean value and the standard deviation of precipitation in 
the modeled sample are lower than the ones for the observed sample. However, the opposite is true for the statistical 
measures of skewness and kurtosis. The skewness of the climatic precipitation data is almost 53% higher than the respective 
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measure for the observations, while for kurtosis this proportion raises to almost 94%. These differences become milder after 
correcting the data for bias. The respective proportions for the corrected datasets are estimated at 20.5% and 24.5%, for 
skewness and kurtosis, respectively. The mean and maximum values of the bias corrected data (1951-2000) are close to 
the values estimated for the observations, while the standard deviation is assessed almost 11% higher for the corrected 
dataset. Comparing the different statistics of the model data for all three periods, a quite stable mean value can be observed, 
while the higher order statistics present a progressive increase. Therefore, the first future period (2001-2050) presents 
increased values of 5.3%, 15.4% and 39.5% in standard deviation, skewness and kurtosis, respectively, compared to the 
present climate period (1951-2000). These proportions are 3.3%, 35% and almost 134%, when comparing the two future 
periods (2051-2100 and 2001-2050). These differences are quite preserved for the bias corrected samples. Thus, after 
correcting the data for bias, the first future period presents 7.4%, 17% and almost 42% increase in standard deviation, 
skewness and kurtosis, respectively, compared to the present climate. When comparing the abovementioned statistical 
measures of the second future period with the ones of the first future period, the increases reach 8%, 37.5% and almost 
144% for standard deviation, skewness and kurtosis, respectively.   

Table 1. Descriptive statistics for the wet days of all datasets of area 1 (Thessaloniki) 

Statistical measures 
Observations Climatic/ Model data Bias corrected data 

1958-2000 1951-2000 2001-2050 2051-2100 1951-2000 2001-2050 2051-2100 

Min (mm) 0.1 0.01 0.01 0.01 0.4 0.4 0.4 

Max (mm) 98.0 84.8 116.3 185.7 97.8 135.3 218.6 

Median (mm) 2.1 0.5 0.5 0.4 1.9 1.9 1.8 

Mean (mm) 4.9 2.4 2.5 2.4 5.0 5.0 5.0 

Standard deviation (mm) 7.3 5.7 6.0 6.2 8.1 8.7 9.4 

Skewness 3.4 5.2 6.0 8.1 4.1 4.8 6.6 

Kurtosis  21.7 42.1 58.7 137.2 27 38.3 93.4 

Number of dry days 11774 9682 9760 10750 13986 13831 14517 

 
For the area of Lesvos, the mean value and the standard deviation of precipitation in the modeled sample are lower than 
the ones for the observed sample, while the statistical measures of skewness and kurtosis are assessed higher. The 
skewness of the climatic precipitation data is 57% higher than the respective estimate for the observations. The kurtosis of 
the model data is also significantly higher than the one for the observations. These differences are almost negligible after 
correcting the data for bias. This can be attributed to the non-parametric bias correction method applied. Comparing the 
different statistics of the model data for all three periods, a quite stable mean value can be observed, while the higher order 
statistics present an increase in the intermediate period and a subsequent decrease (or stability for the standard deviation)  
in the last period. Therefore, for the standard deviation, the skewness and the kurtosis, the first future period (2001-2050) 
presents increased values compared to present climate period, up to 15.7%, 25.5% and 50.6%, respectively. For the period 
2051-2100 the statistical measures of skewness and kurtosis decrease by almost 10% and 25%, respectively. After 
correcting the data for bias, the first future period presents an increase of 15.5%, 27.5% and 45%, in standard deviation, 
skewness and kurtosis, respectively, compared to the interval 1951-2000. During the second future period, the decreases 
in the higher moments are lighter and are estimated at almost 5.5% for skewness and 7% for kurtosis. 

Table 2. Descriptive statistics for the wet days of all datasets of area 2 (Lesvos) 

Statistical measures 
Observations Climatic/ Model data Bias corrected data 

1958-2000 1950-2000 2001-2050 2051-2100 1950-2000 2001-2050 2051-2100 

Min (mm) 0.1 0.01 0.01 0.01 0.1 0.1 0.1 

Max (mm) 127.9 134.5 152.2 128.5 127.9 145.7 127.3 

Median (mm) 4.0 1.2 1.1 1.1 4.0 4.0 4.1 

Mean (mm) 9.1 3.8 3.9 4.0 9.0 9.6 9.7 

Standard deviation (mm) 12.9 7.0 8.1 8.1 12.9 14.9 14.9 

Skewness 3.0 4.7 5.9 5.3 2.9 3.7 3.5 

Kurtosis 16.5 41.5 62.5 46.9 15.6 22.6 21.0 

Number of dry days 12641 11408 11355 12298 14992 14832 15280 

 
For the area of Heraklio (area 3), almost all statistical measures of precipitation in the climatic sample of the present climate 
are assessed lower than the ones for the observed sample. The differences observed in the basic statistical measures of 
the two datasets are reduced after correcting the data for bias. Comparing the different statistics of the model data for all 
three periods, a quite stable mean value and a standard deviation that does not have large variations can be observed, 
while the higher order statistics present a decrease in the intermediate period and an increase in the last period. Therefore, 
for skewness and kurtosis, the first future period (2001-2050) presents 17% and 37.8% reduced values, compared to the 
present climate period. The respective increases for the period 2051-2100 are assessed at 53% and 175%. After correcting 
the data for bias, the first future period presents a decrease of 27% in skewness and 52.7% in kurtosis, compared to the 
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period 1951-2000. When comparing the statistical measures of standard deviation and skewness of the second future period 
with the ones of the first future period, the increases reach 21.4% and 80%, respectively. The kurtosis of the wet days of the 
second future period is almost three times the one estimated for the first future period.    

Table 3. Descriptive statistics for the wet days of all datasets of area 3 (Heraklio) 

Statistical measures 
Observations Climatic/ Model data Bias corrected data 

1958-2000 1950-2000 2001-2050 2051-2100 1950-2000 2001-2050 2051-2100 

Min (mm) 0.1 0.01 0.01 0.01 1.0 1.0 1.0 

Max (mm) 222.2 102.5 70.8 139.3 222.3 141.5 323.3 

Median (mm) 3.0 0.5 0.5 0.4 3.8 4.0 4.1 

Mean (mm) 6.7 2.3 2.4 2.3 7.6 7.9 8.1 

Standard deviation (mm) 10.6 4.9 4.9 5.3 11.9 11.7 14.2 

Skewness 5.5 5.9 4.9 7.5 6.3 4.6 8.3 

Kurtosis 72.1 63.5 39.5 108.8 70.4 33.3 123.4 

Number of dry days 12612 8827 18862 9812 15086 14867 15375 

 
For the area of Corfu (area 4), the mean value and the standard deviation of precipitation in the climatic sample are lower 
than the ones for the observed sample, while the statistical measures of skewness and kurtosis are assessed higher. The 
skewness and the kurtosis of the model precipitation data are about 38% higher than the respective measures for the 
observations. These differences are almost negligible after correcting the data for bias. This can be attributed to the non-
parametric bias correction method applied. Comparing the different statistics of the model data for all three periods, a quite 
stable mean value can be observed, while the higher order statistics present a decrease in the intermediate period and an 
increase in the last period. Therefore, for the standard deviation, the skewness and the kurtosis, the first future period (2001-
2050) presents decreased values compared to the present climate period (1951-2000), with proportions of 7.4%, 10% and 
17.3%, respectively. The respective increases for the period 2051-2100 are assessed at 12.6%, 20% and 46.8%. After 
correcting the data for bias, the first future period presents a decrease of 6%, 14.3% and 27.5% in standard deviation, 
skewness and kurtosis, respectively, compared to the period 1951-2000. When comparing the abovementioned statistical 
measures of the second future period with the ones of the first future period, the increases reach 14.4%, 56.7% and almost 
165% for standard deviation, skewness and kurtosis, respectively.  

Table 4. Descriptive statistics for the wet days of all datasets of area 4 (Corfu) 

Statistical measures 
Observations Climatic/ Model data Bias corrected data 

1958-2000 1951-2000 2001-2050 2051-2100 1951-2000 2001-2050 2051-2100 

Min (mm) 0.1 0.01 0.01 0.01 0.1 0.1 0.1 

Max (mm) 239.3 141.0 133.6 154.0 239.3 211.3 285.4 

Median (mm) 4.6 1.1 1.1 1.1 4.6 4.8 5.0 

Mean (mm) 10.4 4.4 4.3 4.5 10.3 10.1 10.7 

Standard deviation (mm) 14.9 9.4 8.7 9.8 14.8 13.9 15.9 

Skewness 3.6 5.0 4.5 5.4 3.5 3.0 4.7 

Kurtosis 28.6 39.3 32.5 47.7 26.6 19.3 51.2 

Number of dry days 11200 10603 10628 11428 13256 13155 13716 

 

6. ANALYSIS OF EXTREME PRECIPITATION 

The analysis of extreme precipitation events includes the fitting of the extreme value distributions GEV and GPD to all 
datasets (bias corrected present climate, bias corrected future climate, observations) of all the studied locations. The GEV 
is fitted to annual maxima of precipitation for each study period, while the GPD is fitted to the excesses of appropriately 
defined thresholds for each location and time period considered. The MLE is used for parameter estimation with both 
distribution functions. The ML estimator is replaced by the GML estimator, when the former provides inadmissible results in 
the shape parameter space, accounting for the shape parameter 95% confidence intervals.   

For Thessaloniki (area 1) the GEV-MLE fits the annual maxima of the bias corrected sample quite well for the present climate 
and the first period of the future climate. However, the distribution function of precipitation extremes appears to be upper 
bounded for the period 1951-2000, while the uncertainty in the return level estimates appears quite increased for the period 
2001-2050. For the future period 2051-2100, the GEV-MLE fails to represent the most extreme values of precipitation, even 
if it presents quite a good fitting to the upper part of the data sample. For implementing the GPD, a time interval of r = 3 days 
is selected between cluster peaks for all time periods considered, to insure mutual independence between extreme 
precipitation events. For the present climate period (1951-2000) and the two periods of the future climate (2000-2050 and 
2051-2100), the selected thresholds are set at 20mm, 22mm and 17mm, respectively. The respective estimates of the 
extremal indices are 0.879, 0.895 and 0.847. It should be noted that for all three periods, the standard errors of the 
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parameters are significantly reduced, compared to using the GEV distribution function, therefore limiting uncertainty in return 
level estimates for both the present and the future climate conditions (this reduction reaches 40.8% (113mm) for the interval 
2001-2050 and for a return period of 500 years). The ML estimate of the shape parameter is positive for all three periods 
considered, identifying a heavy-tailed extreme value distribution, quite common for precipitation extremes. For the third 
interval considered (2051-2100), the fitted GPD does not again represent the most extreme value of the data sample well, 
however this value lies closer to the upper 95% confidence interval for a return period of 50 years, compared to the fitted 
GEV distribution function. Therefore, for the area of Thessaloniki the GPD with its parameters estimated by means of the 
MLE is selected as the most appropriate model for the present and the future climate conditions. 

For Lesvos (area 2), the fitting of the GEV distribution function to the samples of all three periods considered is judged to be 
good. However, the uncertainty associated with these return level estimates is high enough even for low return periods. 
Fitting the GPD to all three time periods considered improves the results extracted. For the present climate period (1951-
2000) and the two periods of the future climate (2001-2050 and 2051-2100), the selected thresholds are set at 31mm, 34mm 
and 33mm, respectively. The respective estimates of the extremal indices are 0.822, 0.839 and 0.814. The diagnostic plots 
for the GPD, not presented here for the sake of brevity, are improved compared to the ones of the GEV for all time intervals, 
while the uncertainty associated with return level estimates is reduced, compared to fitting the GEV distribution function. It 
should be noted that for the interval 1951-2000 and for a high return period of 500 years, the uncertainty in precipitation 
extremes is limited by almost 64% (178mm) when using the GPD, compared to the annual maximum model. The GPD 
function with its parameters estimated utilizing the MLE procedure is again selected as the best fitted model. Figure 2 
presents the return level plot for all three time periods considered (1951-2000, 2001-2050 and 2051-2100) for the areas of 
Thessaloniki and Lesvos. The plot includes the maximum likelihood estimates and the 95% confidence intervals of 
precipitation return level for all three periods. Figure 2 also presents the return level plot of the observations (1958-2000) for 
evaluating the performance of the bias correction method used for each location, together with the data used for all time 
periods.  

 
Figure 2. Precipitation return level plots for present and future climate conditions for Thessaloniki and Lesvos 

The study of the return level estimates for the area of Thessaloniki indicates an increase in the intensity of extreme 
precipitation events during the whole future time period. Comparing the precipitation return level estimates of the present 
climate period (1951-2000) with the ones of the first future period (2001-2050), an increase of 14.6% (14.7 mm) and 15.5% 
(17.6 mm) can be estimated for the latter one, for return periods of 50 and 100 years, respectively. Confidence interval 
bounds of the first future period appear also increased compared to the associate bounds of the present climate. During the 
future time period 2051-2100 precipitation return level estimates also appear increased by 32.8% (33.1 mm) and 39.8% 
(45.3 mm), compared to the present climate period, for return periods of 50 and 100 years, respectively. Confidence interval 
bounds and confidence interval ranges also appear increased. Precipitation extremes in Thessaloniki present an upward 
trend during the three periods considered. From Figure 2 a large difference in return level estimates can be observed 
between the bias corrected present climate data and the observations (1958-2000). This difference can be attributed to the 
parametric model utilized for the correction of bias of the climatic data. This model overestimates the extreme percentiles of 
the data sample, even if it represents the highest observation very well. Another parametric model, which provides a better 
fit on a quantile-quantile level plot, could provide closer return level estimates between the climatic data and the 
observations.  

In Lesvos, precipitation extremes also appear increased in the future period compared to the present climate conditions. 
This is valid for both future climate periods. More specifically, for the future period 2001-2050, an increase in extreme 
precipitation of 39.9% and 44.3%, compared to the present climatic conditions, is assessed for return periods of 50 and 100 
years, respectively. These proportions correspond to precipitation of 47.8 mm and 58.1 mm, respectively. During the third 
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time period 2051-2100, the increase is higher and is estimated at 43.1% and 50.1%, respectively. The respective quantities 
are almost 51.5 mm and 65.6 mm. It should be noted that due to the non-parametric bias correction procedure used, there 
is a close agreement between precipitation return level estimates of the present climate climatic data and the observations.   

For Heraklio (area 3), the GEV-MLE presents inadmissible results in terms of the shape parameter of the model for the two 
periods of the future climate. The use of the GEV-GMLE model for these two periods leads to better results. However, 
diagnostic fitting plots, not presented here for the sake of brevity, are significantly improved when fitting the GPD function to 
all three periods considered. For the present climate period (1951-2000) and the two periods of the future climate (2001-
2050 and 2051-2100) the selected thresholds are set at 24mm, 32mm and 34mm, respectively. The respective estimates 
of the extremal indices are 0.770, 0.840 and 0.850. The GPD-MLE is selected for the first two 50 years periods (1951-2000 
and 2001-2050) and the GPD-GMLE is judged to be the most appropriate model for the period 2051-2100. It should be 
noted that for the period 2001-2050 and for a return period of 500 years, the range of the 95% confidence interval of 
precipitation becomes narrower by almost 50% when fitting the GPD, compared to the GEV distribution function.   

For Corfu (area 4) the GEV-MLE fitted to the bias corrected sample is judged to perform well only for the present climate 
conditions. For the future period 2001-2050, the GEV distribution does not represent the most extreme value of the dataset, 
while for the future period 2051-2100 the use of the MLE leads to inadmissible results for the shape parameter of the 
distribution. Therefore, for this period the GEV distribution is fitted utilizing the GMLE. However, the fitting of the GEV-GMLE 
to the annual maxima of the period 2051-2100 is judged quite poor, since the most extreme data of the sample are not well 
represented by the model. For implementing the GPD, a time interval of r = 3 days is selected between cluster peaks for all 
time periods considered, to insure mutual independence between extreme precipitation events. For the present climate 
period (1951-2000) and the two periods of the future climate (2001-2050 and 2051-2100) the selected thresholds are set at 
34mm, 42mm and 32mm, respectively. The respective estimates of the extremal indices are 0.799, 0.838 and 0.755. The 
GPD function with parameters estimated using the MLE is also selected in Corfu for modelling precipitation extremes in all 
three time periods of study. The GPD presents a better fit to the most extreme part of the sample in all time periods, 
compared to the GEV, while return level confidence intervals are estimated narrower in all three time periods (this difference 
reaches 77.8% for the period 2051-2100 and for a return period of 500 years). Figure 3 presents the return level plot for all 
three time periods considered (1951-2000, 2001-2050 and 2051-2100) for the areas of Heraklio and Corfu. The plot includes 
the maximum likelihood estimates and the 95% confidence intervals of precipitation return level for all three periods. Figure 
3 also presents the return level plot of the observations (1958-2000), together with the data used for all time period. 

 

Figure 3. Precipitation return level plots for present and future climate conditions for Heraklio and Corfu 

For Heraklio in the intermediate period (2001-2050), a decrease in extreme precipitation, compared to the present climate 
period, is evident. During the future period 2051-2100, there are no significant changes in extreme precipitation, compared 
to present climatic conditions. More specifically, for the period 1951-2000, precipitation return level estimates for return 
periods of 50 and 100 years are assessed at 187.1 mm and 225.3 mm, respectively. For the short-term future period (2001-
2050), the respective return level estimates are calculated at 148.6 mm and 166.4 mm. The estimated decrease is 20.5% 
for a return period of 50 years and 26.1%, for a return period of 100 years. For the long-term future period the precipitation 
return level estimates for return periods of 50 and 100 years are assessed at 195.6 mm and 229.9 mm, respectively. 
Therefore, compared to the present climate period, there is an increase in precipitation extremes of almost 4.6% (8.6 mm) 
for a return period of 50 years and 2.1% (4.7 mm), for a return period of 100 years. From Figure 3, a difference in return 
level estimates can be observed between the present climate data from the climatic model, after being corrected for bias, 
and the observations (1958-2000). This difference is attributed to the parametric model utilized for the correction of bias of 
the climatic data.  

In Corfu, during the short-term future period (2001-2050), a decrease in precipitation extremes is presented, compared to 
present climate conditions, while for the long-term future period an increase is apparent. More specifically, for return periods 
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of 50 and 100 years, the precipitation return level is estimated at 172.5 mm and 195.5 mm, respectively, for the present 
climate conditions. The respective estimates for the future period 2001-2050 are almost 142.0 mm and 155.8 mm. Therefore, 
for this future period the decrease in extreme precipitation is assessed at 17.7% and 20.3%, for return periods of 50 and 
100 years. On the other hand, for the future period 2051-2100, the 50-years and 100-years precipitation levels are calculated 
at 209.1 mm and 247.8 mm, respectively. Therefore, for this future period an increase in precipitation return level estimates 
is assessed, compared to the present climate period. This increase reaches 21.2% and 26.8%, for return periods of 50 and 
100 years, respectively. It should be noted that for this area, there is a close agreement between precipitation return level 
estimates of the present climate mofel data and the observations (1958-2000). This agreement is attributed to the selected 
non-parametric bias correction method utilized.  

7. CONCLUSIONS 

In the present work the effects of climate change on precipitation extremes in four selected Greek areas are studied. More 
specifically, the projections of RegCM3_10 climatic model covering a time period of 150 years (1951-2100) are separated 
in three parts of equal size, in order to represent the fifty years of the current, the short-term and the long-term future climate. 
Model precipitation data is found to hold bias, commonly detected in regional climate models, making it necessary to perform 
various methods of bias correction. Both parametric and non-parametric methods are used for the four regions studied, 
selecting the most appropriate for each one. Extreme value theory is then implemented for the bias corrected precipitation 
datasets and both GEV (Generalized Extreme Value Distribution) and GPD (Generalized Pareto Distribution) including the 
extremal index, θ, for declustering extremes, are fitted. Return level estimates of each 50 year-period are estimated and 
compared to assess the changes in the extreme precipitation climate between present and future conditions. 

In all four areas considered the GPD, which considers more than a single event per year, represents the extreme 
precipitation climate more concisely than the GEV and with significantly reduced uncertainty associated with return level 
estimates. More specifically, for a high return period of 500 years this reduction reaches almost 41% in Thessaloniki for 
2001-2050, 64% in Lesvos for the period 1951-2000, 50% in Heraklio for 2001-2050 and almost 78% in Corfu for the period 
2051-2100. For implementing the GPD, a time interval of r = 3 days is selected between cluster peaks for all time periods 
considered, to insure mutual independence between extreme precipitation events 

For the study area of Thessaloniki an increase in the intensity of extreme precipitation events during the whole future time 
period is obvious. Comparing the precipitation return level estimates of the present climate period (1951-2000) with the ones 
of the short-term future period (2001-2050), an increase of 15.5% (17.6 mm) can be estimated for the latter one, for a return 
period of 100 years. For such a return period during the long-term future time period, precipitation return level estimates 
also appear increased by almost 40% (45.3 mm), compared to the present climate conditions. 

For the area of Lesvos, precipitation extremes appear increased in the future period compared to the present climate 
conditions. For the future period 2001-2050, an increase in extreme precipitation of about 44.5%, compared to the present 
climatic conditions, is assessed for a return period of 100 years. During the third time period considered, the increase is 
greater and is estimated at about 50% for a return period of 100 years. 

For the area of Heraklio, extreme precipitation levels are reduced for the short-term future period, while for the long-term 
future climate precipitation extremes do not change significantly, compared to present climatic conditions. More specifically, 
during the short-term future period (2001-2050), the 100-years return level estimate of precipitation is decreased to a 
proportion of 26%, compared to present climate conditions. For the long-term future period, there is a small increase in 
precipitation extremes of about 2% (4.7 mm), for a return period of 100 years, compared to the period 1951-2000.    

Finally, for the area of Corfu, a decrease in precipitation extremes is presented for the short-term future climate, while for 
the long-term future period precipitation extremes increase again. More specifically, for a return period of 100 years, the 
decrease in extreme precipitation during the interval 2001-2050 is assessed at about 20.5%, while for the long-term future 
period (2051-2100) there is an increase of almost 27%, compared to present climate (1951-2000) conditions.  
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